
thermostat Documentation
Release 1.0.0

Open Energy Efficiency, Inc.

November 24, 2016

Contents

1 Usage 3
1.1 Quickstart . 3
1.2 API . 14

2 License 27

3 Contact 29

Python Module Index 31

i

ii

thermostat Documentation, Release 1.0.0

This package and the savings calculation methods implemented herein are being developed in association with the
EPA and industry stakeholders to help standardize calculations of temperature/run-time savings due to connected
thermostats.

Contents 1

thermostat Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Usage

1.1 Quickstart

1.1.1 Installation

To install the thermostat package for the first time, we highly recommend that you create a virtual environment or a
conda environment in which to install it. You may choose to skip this step, but do so at the risk of corrupting your
existing python environment. Isolating your python environment will also make it easier to debug.

if using virtualenvwrapper (see https://virtualenvwrapper.readthedocs.org/en/latest/install.html)
$ mkvirtualenv thermostat
(thermostat)$ pip install thermostat

if using conda (see note below - conda is distributed with Anaconda)
$ conda create --yes --name thermostat pandas
(thermostat)$ pip install thermostat

If you already have an environment, use the following:

if using virtualenvwrapper
$ workon thermostat
(thermostat)$

if using conda
$ source activate thermostat
(thermostat)$

To deactivate the environment when you’ve finished, use the following:

if using virtualenvwrapper
(thermostat)$ deactivate
$

if using conda
(thermostat)$ source deactivate
$

Check to make sure you are on the most recent version of the package.

>>> import thermostat; thermostat.get_version()
'1.0.0'

If you are not on the correct version, you should upgrade:

3

thermostat Documentation, Release 1.0.0

$ pip install thermostat --upgrade

The command above will update dependencies as well. If you wish to skip this, use the --no-deps flag:

$ pip install thermostat --upgrade --no-deps

Previous versions of the package are available on github.

Note: If you experience issues installing python packages with C extensions, such as numpy or scipy, we recommend
installing and using the free Anaconda Python distribution by Continuum Analytics. It contains many of the numeric
and scientific packages used by this package and has installers for Python 2.7 and 3.5 for Windows, Mac OS X and
Linux.

Once you have verified a correct installation, import the necessary methods and set a directory for finding and storing
data.

Note: If you suspect a package version conflict or error, you can verify the versions of the packages you have installed
against the package versions in thermostatreqnotes.txt.

To list your package versions, use:

$ pip freeze

or (if you’re using Anaconda):

$ conda list

1.1.2 Script setup and imports

Import the few built-in python packages and methods we will be using in this tutorial as follows.

import sys
import os
import warnings
from os.path import expanduser

Also make sure to import the methods we will be using from the thermostat package.

from thermostat.importers import from_csv
from thermostat.exporters import metrics_to_csv
from thermostat.stats import compute_summary_statistics
from thermostat.stats import summary_statistics_to_csv

Set the data_dir variable as a convenience. We will refer to this directory and save our results in it. You should also
move all downloaded and extracted files used in this tutorial into this directory before using them. You may, of course,
choose to use a different directory, which you can set here, or override it entirely by replacing it where it appears in
the tutorial.

data_dir = os.path.join(expanduser("~"), "thermostat_tutorial")
or data_dir = "/full/path/to/custom/directory/"

4 Chapter 1. Usage

https://github.com/openeemeter/thermostat/releases
https://www.continuum.io/downloads

thermostat Documentation, Release 1.0.0

1.1.3 Optional Setup

If you wish to follow the progress of downloading and caching external weather files, which will be the most time-
consuming portion of this tutorial, you may wish at this point to configure logging. The example here will work within
most ipython or script environments. If you have a more complicated logging setup, you may need to use something
other than the root logger, which this uses.

import logging
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)

Note: The thermostat package depends on the eemeter package for weather data fetching. The eemeter package
automatically creates its own cache directory in which it keeps cached versions of weather source data. This speeds
up the (generally I/O bound) NOAA weather fetching routine on subsequent internal calls to fetch the same weather
data (i.e. getting outdoor temperature data for thermostats that map to the same weather station).

For more information, see the eemeter package.

Note: US Census Bureau ZIP Code Tabulation Areas (ZCTA) are used to map USPS ZIP codes to outdoor temperature
data. If the automatic mapping is unsuccessful for one or more of the ZIP codes in your dataset, the reason is likely
to be the discrepancy between “true” USPS ZIP codes and the US Census Bureau ZCTAs. “True” ZIP codes are not
used because they do not always map well to location (for example, ZIP codes for P.O. boxes). You may need to first
map ZIP codes to ZCTAs, or these thermostats will be skipped. There are roughly 32,000 ZCTAs and roughly 42000
ZIP codes - many fewer ZCTAs than ZIP codes.

1.1.4 Computing individual thermostat-season metrics

After importing the package methods, load the example thermostat data, or provide data of your own. See Input data
for more detailed file format information.

Fabricated example data from 35 thermostats in various climate zones, is available for download here.

Loading the thermostat data below will take more than a few minutes, even if the weather cache is enabled (see note
above). This is because loading thermostat data involves downloading hourly weather data from a remote source - in
this case, the NCDC.

The following loads an lazy iterator over the thermostats. The thermostats will be loaded into memory as necessary in
the following steps.

metadata_filename = os.path.join(data_dir, "examples/metadata.csv")
thermostats = from_csv(metadata_filename, verbose=True)

To calculate savings metrics, iterate through thermostats and save the results. Uncomment the commented lines if you
would like to store the thermostats in memory for inspection. Note that this could eat up your application memory and
is only recommended for debugging purposes.

metrics = []
saved_thermostats = []
for thermostat in thermostats:

outputs = thermostat.calculate_epa_field_savings_metrics()
metrics.extend(outputs)
saved_thermostats.append(thermostat)

The single-thermostat metrics should be output to CSV and converted to dataframe format.

1.1. Quickstart 5

https://eemeter.readthedocs.io/en/release-v0.4.8-alpha/weather.html#isdweathersource

thermostat Documentation, Release 1.0.0

output_filename = os.path.join(data_dir, "thermostat_example_output.csv")
metrics_df = metrics_to_csv(metrics, output_filename)

The output CSV will be saved in your data directory and should very nearly match the output CSV provided in the
example data.

See Output data for more detailed file format information.

1.1.5 Computing summary statistics

Once you have obtained output for each individual thermostat in your dataset, use the stats module to compute sum-
mary statistics, which are formatted for submission to the EPA. The example below works with the output file from
the tutorial above and can be modified to use your data.

Compute statistics across all thermostats.

uses the metrics_df created in the Quickstart above.
with warnings.catch_warnings():

warnings.simplefilter("ignore")

uses the metrics_df created in the quickstart above.
stats = compute_summary_statistics(metrics_df)

If you want to have advanced filter outputs, use this instead
stats_advanced = compute_summary_statistics(metrics_df, advanced_filtering=True)

Save these results to file.

Each row of the saved CSV will represent one type of output, with one row per statistic per output. Each column in the
CSV will represent one subset of thermostats, as determined by grouping by EIC climate zone and applying various
filtering methods. National weighted averages will be available near the top of the file.

At this point, you will also need to provide an alphanumeric product identifier for the connected thermostat; e.g. a
combination of the connected thermostat service plus one or more connected thermostat device models that comprises
the data set.

product_id = "INSERT ALPHANUMERIC PRODUCT ID HERE"
stats_filepath = os.path.join(data_dir, "thermostat_example_stats.csv")
stats_df = summary_statistics_to_csv(stats, stats_filepath, product_id)

or with advanced filter outputs
stats_advanced_filepath = os.path.join(data_dir, "thermostat_example_stats_advanced.csv")
stats_advanced_df = summary_statistics_to_csv(stats_advanced, stats_advanced_filepath, product_id)

National savings are computed by weighted average of percent savings results grouped by climate zone. Heavier
weights are applied to results in climate zones which, regionally, tend to have longer runtimes. Weightings used are
available for download.

1.1.6 More information

For additional information on package usage, please see the API documentation.

1.1.7 Input data

Input data should be specified using the following formats. One CSV should specify thermostat summary metadata
(e.g. unique identifiers, location, etc.). Another CSV (or CSVs) should contain runtime information, linked to the

6 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

metadata csv by the thermostat_id column.

Example files here.

Thermostat Summary Metadata CSV format

Columns

Name Data
Format

Units Description

thermostat_id string N/A A uniquely identifying marker for the thermostat.
equipment_type enum,

{0..5}
N/A The type of controlled HVAC heating and cooling equipment. 1

zipcode string,
5 digits

N/A The ZIP code in which the thermostat is installed 2.

utc_offset string N/A The UTC offset of the times in the corresponding interval data CSV. (e.g.
“-0700”)

interval_data_filenamestring N/A The filename of the interval data file corresponding to this thermostat.
Should be specified relative to the location of the metadata file.

• Each row should correspond to a single thermostat.

• Nulls should be specified by leaving the field blank.

• All interval data for a particular thermostat should use the same, single UTC offset provided in the metadata file.

1Options for equipment_type:

• 0: Other – e.g. multi-zone multi-stage, modulating. Note: module will not output savings data for this type.

• 1: Single stage heat pump with electric resistance aux and/or emergency heat (i.e., strip heat)

• 2: Single stage heat pump without additional and/or supplemental heating sources (excludes aux/emergency heat as well as dual fuel
systems, i.e., heat pump plus gas- or oil-fired furnace)

• 3: Single stage non heat pump with single-stage central air conditioning

• 4: Single stage non heat pump without central air conditioning

• 5: Single stage central air conditioning without central heating

2Will be used for matching with a weather station that provides external dry-bulb temperature data. This temperature data will be used to
determine the bounds of the heating and cooling season over which metrics will be computed. For more information on the mapping between ZIP
codes and weather stations, please see eemeter.weather.location.

1.1. Quickstart 7

https://eemeter.readthedocs.io/en/release-v0.4.8-alpha/weather.html#eemeter.weather.location.zipcode_to_climate_zone

thermostat Documentation, Release 1.0.0

Thermostat Interval Data CSV format

Columns

Name Data Format Units Description
thermostat_id string N/A Uniquely identifying marker for the thermostat.
date YYYY-MM-DD

(ISO-8601)
N/A Date of this set of readings.

cool_runtime decimal or integer min-
utes

Daily runtime of cooling equipment.

heat_runtime decimal or integer min-
utes

Daily runtime of heating equipment. 3

auxiliary_heat_HHdecimal or integer min-
utes

Hourly runtime of auxiliary heat equipment (HH=00-23).

emergency_heat_HHdecimal or integer min-
utes

Hourly runtime of emergency heat equipment (HH=00-23).

temp_in_HH decimal, to nearest
0.5

°F Hourly average conditioned space temperature over the
period of the reading (HH=00-23).

heating_setpoint_HHdecimal, to nearest
0.5

°F Hourly average thermostat setpoint temperature over the
period of the reading (HH=00-23).

cooling_setpoint_HHdecimal, to nearest
0.5

°F Hourly average thermostat setpoint temperature over the
period of the reading (HH=00-23).

• Each row should correspond to a single daily reading from a thermostat.

• Nulls should be specified by leaving the field blank.

• Zero values should be specified as 0, rather than as blank.

• If data is missing for a particular row of one column, data should still be provided for other columns in that row.
For example, if runtime is missing for a particular date, please still provide indoor conditioned space temperature
and setpoints for that date, if available.

• Runtimes should be less than or equal to 1440 min (1 day).

• Dates should be specified in the ISO 8601 date format (e.g. 2015-05-19).

• All temperatures should be specified in °F (to the nearest 0.5°F).

• If no distinction is made between heating and cooling setpoint, set both equal to the single setpoint.

• All runtime data MUST have the same UTC offset, as provided in the corresponding metadata file.

• If only a single setpoint is used for the thermostat, please copy the same setpoint data in to the heating and
cooling setpoint columns.

• Outdoor temperature data need not be provided - it will be fetched automatically from NCDC using the eemeter
package package.

• Dates should be consecutive.

1.1.8 Output data

Individual thermostat-season

The following columns are a intermediate output generated for each thermostat-season.

3Should not include runtime for auxiliary or emergency heat - this should be provided separately in the columns emergency_heat_HH and
auxiliary_heat_HH.

8 Chapter 1. Usage

https://eemeter.readthedocs.io/en/release-v0.4.8-alpha/weather.html#isdweathersource
https://eemeter.readthedocs.io/en/release-v0.4.8-alpha/weather.html#isdweathersource

thermostat Documentation, Release 1.0.0

Columns

Name Data Format Units Description
General outputs
sw_version string N/A Software version.
ct_identifier string N/A Identifier for thermostat as provided in the metadata file.
equipment_type enum {0..5} N/A Equipment type of this thermostat (1, 2, 3, 4, or 5).
heating_or_cooling string N/A Label for the core day set (e.g. ‘heating_2012-2013’).
zipcode string, 5 digits N/A ZIP code provided in the metadata file.
station string, USAF ID N/A USAF identifier for station used to fetch hourly temperature data.
climate_zone string N/A EIC climate zone (consolidated).
start_date date ISO-8601 Earliest date in input file.
end_zone date ISO-8601 Latest date in input file.
n_days_both_heating_and_cooling integer # days Number of days not included as core days due to presence of both heating and cooling.
n_days_insufficient_data integer # days Number of days not included as core days due to missing data.
n_core_cooling_days integer # days Number of days meeting criteria for inclusion in core cooling day set.
n_core_heating_days integer # days Number of days meeting criteria for inclusion in core heating day set.
n_days_in_inputfile_date_range integer # days Number of potential days in inputfile date range.
baseline10_core_cooling_comfort_temperature float °F Baseline comfort temperature as determined by 10th percentile of indoor temperatures.
baseline90_core_cooling_comfort_temperature float °F Baseline comfort temperature as determined by 90th percentile of indoor temperatures.
regional_average_baseline_cooling_comfort_temperature float °F Baseline comfort temperature as determined by regional average.
regional_average_baseline_heating_comfort_temperature float °F Baseline comfort temperature as determined by regional average.
Model outputs
percent_savings_baseline_percentile float percent Percent savings as given by hourly average CTD or HTD method with 10th or 90th percentile baseline
avoided_daily_mean_core_day_runtime_baseline_percentile float minutes Avoided average daily runtime for core cooling days
avoided_total_core_day_runtime_baseline_percentile float minutes Avoided total runtime for core cooling days
baseline_daily_mean_core_day_runtime_baseline_percentile float minutes Baseline average daily runtime for core cooling days
baseline_total_core_day_runtime_baseline_percentile float minutes Baseline total runtime for core cooling days
percent_savings_baseline_regional float percent Percent savings as given by hourly average CTD or HTD method with 10th or 90th percentile regional baseline
avoided_daily_mean_core_day_runtime_baseline_regional float minutes Avoided average daily runtime for core cooling days
avoided_total_core_day_runtime_baseline_regional float minutes Avoided total runtime for core cooling days
baseline_daily_mean_core_day_runtime_baseline_regional float minutes Baseline average daily runtime for core cooling days
baseline_total_core_day_runtime_baseline_regional float minutes Baseline total runtime for core cooling days
mean_demand float °F Average cooling demand
alpha float minutes/∆°F The fitted slope of cooling runtime to demand regression
tau float °F The fitted intercept of cooling runtime to demand regression
mean_sq_err float N/A Mean squared error of regression
root_mean_sq_err float N/A Root mean squared error of regression
cv_root_mean_sq_err float N/A Coefficient of variation of root mean squared error of regression
mean_abs_err float N/A Mean absolute error
mean_abs_pct_err float N/A Mean absolute percent error
Runtime outputs
total_core_cooling_runtime float minutes Total core cooling equipment runtime
total_core_heating_runtime float minutes Total core heating equipment runtime
total_auxiliary_heating_core_day_runtime float minutes Total core auxiliary heating equipment runtime
total_emergency_heating_core_day_runtime float minutes Total core emergency heating equipment runtime
daily_mean_core_cooling_runtime float minutes Average daily core cooling runtime
daily_mean_core_heating_runtime float minutes Average daily core cooling runtime
Resistance heat outputs
rhu_00F_to_05F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 0 ≤ 𝑇𝑜𝑢𝑡 < 5

Continued on next page

1.1. Quickstart 9

thermostat Documentation, Release 1.0.0

Table 1.1 – continued from previous page
Name Data Format Units Description
rhu_05F_to_10F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 5 ≤ 𝑇𝑜𝑢𝑡 < 10
rhu_10F_to_15F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 10 ≤ 𝑇𝑜𝑢𝑡 < 15
rhu_15F_to_20F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 15 ≤ 𝑇𝑜𝑢𝑡 < 20
rhu_20F_to_25F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 20 ≤ 𝑇𝑜𝑢𝑡 < 25
rhu_25F_to_30F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 25 ≤ 𝑇𝑜𝑢𝑡 < 30
rhu_30F_to_35F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 30 ≤ 𝑇𝑜𝑢𝑡 < 35
rhu_35F_to_40F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 35 ≤ 𝑇𝑜𝑢𝑡 < 40
rhu_40F_to_45F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 40 ≤ 𝑇𝑜𝑢𝑡 < 45
rhu_45F_to_50F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 45 ≤ 𝑇𝑜𝑢𝑡 < 50
rhu_50F_to_55F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 50 ≤ 𝑇𝑜𝑢𝑡 < 55
rhu_55F_to_60F decmial 0.0=0%, 1.0=100% Resistance heat utilization for hourly temperature bin 55 ≤ 𝑇𝑜𝑢𝑡 < 60

Summary Statistics

For each real- or integer-valued column (“###”) from the individual thermostat-season output, the following summary
statistics are generated.

(For readability, these columns are actually rows.)

Columns

Name Description
###_n Number of samples
###_upper_bound_95_perc_conf 95% confidence upper bound on mean value
###_mean Mean value
###_lower_bound_95_perc_conf 95% confidence lower bound on mean value
###_sem Standard error of the mean
###_10q 1st decile (10th percentile, q=quantile)
###_20q 2nd decile
###_30q 3rd decile
###_40q 4th decile
###_50q 5th decile
###_60q 6th decile
###_70q 7th decile
###_80q 8th decile
###_90q 9th decile

The following general columns are also output:

Columns

Name Description
sw_version Software version
product_id Alphanumeric product identifier
n_thermostat_core_day_sets_total Number of relevant rows from thermostat module output before

filtering
n_thermostat_core_day_sets_kept Number of relevant rows from thermostat module not filtered

out
n_thermostat_core_day_sets_discardedNumber of relevant rows from thermostat module filtered out

10 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

The following national weighted percent savings columns are also available.

National savings are computed by weighted average of percent savings results grouped by climate zone. Heavier
weights are applied to results in climate zones which, regionally, tend to have longer runtimes. Weightings used are
available for download.

1.1. Quickstart 11

thermostat Documentation, Release 1.0.0

12 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

Columns

Name Description
percent_savings_baseline_percentile_mean_national_weighted_meanNational weighted mean percent savings as given by

baseline_percentile method.
percent_savings_baseline_percentile_q10_national_weighted_meanNational weighted 10th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q20_national_weighted_meanNational weighted 20th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q30_national_weighted_meanNational weighted 30th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q40_national_weighted_meanNational weighted 40th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q50_national_weighted_meanNational weighted 50th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q60_national_weighted_meanNational weighted 60th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q70_national_weighted_meanNational weighted 70th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q80_national_weighted_meanNational weighted 80th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_q90_national_weighted_meanNational weighted 90th percentile percent savings as

given by baseline_percentile method.
percent_savings_baseline_percentile_lower_bound_95_perc_conf_national_weighted_meanNational weighted mean percent savings lower bound as

given by a 95% confidence interval and the
baseline_percentile method.

percent_savings_baseline_percentile_upper_bound_95_perc_conf_national_weighted_meanNational weighted mean percent savings upper bound as
given by a 95% confidence interval and the
baseline_percentile method.

percent_savings_baseline_regional_mean_national_weighted_meanNational weighted mean percent savings as given by
baseline_regional method.

percent_savings_baseline_regional_q10_national_weighted_meanNational weighted 10th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q20_national_weighted_meanNational weighted 20th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q30_national_weighted_meanNational weighted 30th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q40_national_weighted_meanNational weighted 40th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q50_national_weighted_meanNational weighted 50th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q60_national_weighted_meanNational weighted 60th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q70_national_weighted_meanNational weighted 70th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q80_national_weighted_meanNational weighted 80th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_q90_national_weighted_meanNational weighted 90th percentile percent savings as
given by baseline_regional method.

percent_savings_baseline_regional_lower_bound_95_perc_conf_national_weighted_meanNational weighted mean percent savings lower bound as
given by a 95% confidence interval and the
baseline_regional method.

percent_savings_baseline_regional_upper_bound_95_perc_conf_national_weighted_meanNational weighted mean percent savings upper bound as
given by a 95% confidence interval and the
baseline_regional method.

1.1. Quickstart 13

thermostat Documentation, Release 1.0.0

1.2 API

1.2.1 thermostat.importers

thermostat.importers.from_csv(metadata_filename, verbose=False)
Creates Thermostat objects from data stored in CSV files.

Parameters

• metadata_filename (str) – Path to a file containing the thermostat metadata.

• verbose (boolean) – Set to True to output a more detailed log of import activity.

Returns thermostats – Thermostats imported from the given CSV input files.

Return type iterator over thermostat.Thermostat objects

thermostat.importers.get_single_thermostat(thermostat_id, zipcode, equipment_type,
utc_offset, interval_data_filename)

Load a single thermostat directly from an interval data file.

Parameters

• thermostat_id (str) – A unique identifier for the thermostat.

• zipcode (str) – The zipcode of the thermostat, e.g. “01234”.

• equipment_type (str) – The equipment type of the thermostat.

• utc_offset (str) – A string representing the UTC offset of the interval data, e.g. “-
0700”. Could also be “Z” (UTC), or just “+7” (equivalent to “+0700”), or any other
timezone format recognized by the library method dateutil.parser.parse.

• interval_data_filename (str) – The path to the CSV in which the interval data is
stored.

Returns thermostat – The loaded thermostat object.

Return type thermostat.Thermostat

1.2.2 thermostat.exporters

thermostat.exporters.metrics_to_csv(metrics, filepath)
Writes metrics outputs to the file specified.

Parameters

• metrics (list of dict) – list of outputs from the function thermo-
stat.calculate_epa_draft_rccs_field_savings_metrics()

• filepath (str) – filepath specification for location of output CSV file.

Returns df – DataFrame containing data output to CSV.

Return type pd.DataFrame

1.2.3 thermostat.core

class thermostat.core.CoreDaySet(name, daily, hourly, start_date, end_date)
Bases: tuple

14 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

__getnewargs__()
Return self as a plain tuple. Used by copy and pickle.

__getstate__()
Exclude the OrderedDict from pickling

__repr__()
Return a nicely formatted representation string

daily
Alias for field number 1

end_date
Alias for field number 4

hourly
Alias for field number 2

name
Alias for field number 0

start_date
Alias for field number 3

class thermostat.core.Thermostat(thermostat_id, equipment_type, zipcode, station, tempera-
ture_in, temperature_out, cooling_setpoint, heating_setpoint,
cool_runtime, heat_runtime, auxiliary_heat_runtime, emer-
gency_heat_runtime)

Bases: object

Main thermostat data container. Each parameter which contains timeseries data should be a pandas.Series with
a datetimeIndex, and that each index should be equivalent.

Parameters

• thermostat_id (object) – An identifier for the thermostat. Can be anything, but
should be identifying (e.g., an ID provided by the manufacturer).

• equipment_type ({ 0, 1, 2, 3, 4, 5 }) –

– 0: Other - e.g. multi-zone multi-stage, modulating. Note: module will not output savings
data for this type.

– 1: Single stage heat pump with aux and/or emergency heat

– 2: Single stage heat pump without aux or emergency heat

– 3: Single stage non heat pump with single-stage central air conditioning

– 4: Single stage non heat pump without central air conditioning

– 5: Single stage central air conditioning without central heating

• zipcode (str) – Installation ZIP code for the thermostat.

• station (str) – USAF identifier for weather station used to pull outdoor temperature
data.

• temperature_in (pandas.Series) – Contains internal temperature data in de-
grees Fahrenheit (F), with resolution of at least 0.5F. Should be indexed by a pan-
das.DatetimeIndex with hourly frequency (i.e. freq=’H’).

• heating_setpoint (pandas.Series) – Contains target temperature (setpoint) data
in degrees Fahrenheit (F), with resolution of at least 0.5F used to control heating equipment.
Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. freq=’H’).

1.2. API 15

thermostat Documentation, Release 1.0.0

• cooling_setpoint (pandas.Series) – Contains target temperature (setpoint) data
in degrees Fahrenheit (F), with resolution of at least 0.5F used to control cooling equipment.
Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e. freq=’H’).

• temperature_out (pandas.Series) – Contains outdoor temperature (setpoint) data
as observed by a relevant weather station in degrees Fahrenheit (F), with resolution of
at least 0.5F. Should be indexed by a pandas.DatetimeIndex with hourly frequency (i.e.
freq=’H’).

• cool_runtime (pandas.Series,) – Daily runtimes for cooling equipment con-
trolled by the thermostat, measured in minutes. No datapoint should exceed 1440 mins,
which would indicate over a day of runtime (impossible). Should be indexed by a pan-
das.DatetimeIndex with daily frequency (i.e. freq=’D’).

• heat_runtime (pandas.Series,) – Daily runtimes for heating equipment con-
trolled by the thermostat, measured in minutes. No datapoint should exceed 1440 mins,
which would indicate over a day of runtime (impossible). Should be indexed by a pan-
das.DatetimeIndex with daily frequency (i.e. freq=’D’).

• auxiliary_heat_runtime (pandas.Series,) – Hourly runtimes for auxiliary
heating equipment controlled by the thermostat, measured in minutes. Auxiliary heat run-
time is counted when both resistance heating and the compressor are running (for heat pump
systems). No datapoint should exceed 60 mins, which would indicate over a hour of run-
time (impossible). Should be indexed by a pandas.DatetimeIndex with hourly frequency
(i.e. freq=’H’).

• energency_heat_runtime (pandas.Series,) – Hourly runtimes for emergency
heating equipment controlled by the thermostat, measured in minutes. Emergency heat
runtime is counted when resistance heating is running when the compressor is not (for heat
pump systems). No datapoint should exceed 60 mins, which would indicate over a hour of
runtime (impossible). Should be indexed by a pandas.DatetimeIndex with hourly frequency
(i.e. freq=’H’).

calculate_epa_field_savings_metrics(core_cooling_day_set_method=’entire_dataset’,
core_heating_day_set_method=’entire_dataset’,
climate_zone_mapping=None)

Calculates metrics for connected thermostat savings as defined by the specification defined by the EPA
Energy Star program and stakeholders.

Parameters

• core_cooling_day_set_method ({"entire_dataset",
"year_end_to_end"}, default: "entire_dataset") – Method by
which to find core cooling day sets.

– “entire_dataset”: all core cooling days in dataset (days with >= 1 hour of cooling run-
time and no heating runtime.

– “year_end_to_end”: groups all core cooling days (days with >= 1 hour of total cooling
and no heating) from January 1 to December 31 into independent core cooling day sets.

• core_heating_day_set_method ({"entire_dataset",
"year_mid_to_mid"}, default: "entire_dataset") – Method by
which to find core heating day sets.

– “entire_dataset”: all core heating days in dataset (days with >= 1 hour of heating runtime
and no cooling runtime.

– “year_mid_to_mid”: groups all core heating days (days with >= 1 hour of total heating
and no cooling) from July 1 to June 30 into independent core heating day sets.

16 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

• climate_zone_mapping (filename, default: None) – A mapping from
climate zone to zipcode. If None is provided, uses default zipcode to climate zone mapping
provided in tutorial.

default mapping

Returns metrics – list of dictionaries of output metrics; one per set of core heating or cooling
days.

Return type list

get_baseline_cooling_demand(core_cooling_day_set, temp_baseline, tau)
Calculate baseline cooling demand for a particular core cooling day set and fitted physical parameters.

daily CTD base𝑑 =
∑︀24

𝑖=1[𝜏𝑐−hourly Δ𝑇 base cool𝑑.𝑛]+
24 , where

hourly ∆𝑇 base cool𝑑.𝑛(∘𝐹) = base heat𝑇𝑑.𝑛 − hourly outdoor𝑇𝑑.𝑛, and

𝑑 is the core cooling day; (001, 002, 003...𝑥),

𝑛 is the hour; (01, 02, 03...24),

𝜏𝑐 (cooling), determined earlier, is a constant that is part of the CT/home’s thermal/HVAC cooling run time
model, and

[]+ indicates that the term is zero if its value would be negative.

Parameters

• core_cooling_day_set (thermostat.core.CoreDaySet) – Core cooling
days over which to calculate baseline cooling demand.

• temp_baseline (float) – Baseline comfort temperature

• tau (float, default: None) – From fitted demand model.

Returns baseline_cooling_demand – A series containing baseline daily heating demand for the
core cooling day set.

Return type pandas.Series

get_baseline_cooling_runtime(baseline_cooling_demand, alpha)
Calculate baseline cooling runtime given baseline cooling demand and fitted physical parameters.

𝑅𝑇base cool(minutes) = 𝛼𝑐 · daily CTD base𝑑

Parameters

• baseline_cooling_demand (pandas.Series) – A series containing estimated
daily baseline cooling demand.

• alpha (float) – Slope of fitted line

Returns baseline_cooling_runtime – A series containing estimated daily baseline cooling run-
time.

Return type pandas.Series

get_baseline_heating_demand(core_heating_day_set, temp_baseline, tau)
Calculate baseline heating demand for a particular core heating day set and fitted physical parameters.

daily HTD base𝑑 =
∑︀24

𝑖=1[hourly Δ𝑇 base heat𝑑.𝑛−𝜏ℎ]+
24 , where

hourly ∆𝑇 base heat𝑑.𝑛(∘𝐹) = base cool𝑇𝑑.𝑛 − hourly outdoor𝑇𝑑.𝑛, and

𝑑 is the core heating day; (001, 002, 003...𝑥),

1.2. API 17

thermostat Documentation, Release 1.0.0

𝑛 is the hour; (01, 02, 03...24),

𝜏ℎ (heating), determined earlier, is a constant that is part of the CT/home’s thermal/HVAC heating run time
model, and

[]+ indicates that the term is zero if its value would be negative.

Parameters

• core_heating_day_set (thermostat.core.CoreDaySet) – Core heating
days over which to calculate baseline cooling demand.

• temp_baseline (float) – Baseline comfort temperature

• tau (float, default: None) – From fitted demand model.

Returns baseline_heating_demand – A series containing baseline daily heating demand for the
core heating days.

Return type pandas.Series

get_baseline_heating_runtime(baseline_heating_demand, alpha)
Calculate baseline heating runtime given baseline heating demand. and fitted physical parameters.

𝑅𝑇base heat(minutes) = 𝛼ℎ · daily HTD base𝑑

Parameters

• baseline_heating_demand (pandas.Series) – A series containing estimated
daily baseline heating demand.

• alpha (float) – Slope of fitted line

Returns baseline_heating_runtime – A series containing estimated daily baseline heating run-
time.

Return type pandas.Series

get_cooling_demand(core_cooling_day_set)
Calculates a measure of cooling demand using the hourlyavgCTD method.

Starting with an assumed value of zero for Tau (𝜏𝑐), calculate the daily Cooling Thermal Demand
(daily CTD𝑑), as follows

daily CTD𝑑 =
∑︀24

𝑖=1[𝜏𝑐−hourlyΔ𝑇𝑑.𝑛]+
24 , where

hourly∆𝑇𝑑.𝑛(∘𝐹) = hourly indoor𝑇𝑑.𝑛 − hourly outdoor𝑇𝑑.𝑛, and

𝑑 is the core cooling day; (001, 002, 003...𝑥),

𝑛 is the hour; (01, 02, 03...24),

𝜏𝑐 (cooling) is the ∆𝑇 associated with 𝐶𝑇𝐷 = 0 (zero cooling runtime), and

[]+ indicates that the term is zero if its value would be negative.

For the set of all core cooling days in the CT interval data file, use ratio estimation to calculate 𝛼𝑐, the
home’s responsiveness to cooling, which should be positive.

𝛼𝑐

(︀minutes
∘𝐹

)︀
= 𝑅𝑇actual cool∑︀𝑥

𝑑=1 daily CTD𝑑
, where

𝑅𝑇actual cool is the sum of cooling run times for all core cooling days in the CT interval data file.

For the set of all core cooling days in the CT interval data file, optimize 𝜏𝑐 that results in minimization
of the sum of squares of the difference between daily run times reported by the CT, and calculated daily
cooling run times.

18 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

Next recalculate 𝛼𝑐 (in accordance with the above step) and record the model’s parameters (𝛼𝑐, 𝜏𝑐)

Parameters core_cooling_day_set (thermostat.core.CoreDaySet) – Core day
set over which to calculate cooling demand.

Returns

• demand (pd.Series) – Daily demand in the core heating day set as calculated using the
method described above.

• tau (float) – Estimate of 𝜏𝑐.

• alpha (float) – Estimate of 𝛼𝑐

• mse (float) – Mean squared error in runtime estimates.

• rmse (float) – Root mean squared error in runtime estimates.

• cvrmse (float) – Coefficient of variation of root mean squared error in runtime estimates.

• mape (float) – Mean absolute percent error

• mae (float) – Mean absolute error

get_core_cooling_day_baseline_setpoint(core_cooling_day_set,
method=’tenth_percentile’,
source=’temperature_in’)

Calculate the core cooling day baseline setpoint (comfort temperature).

Parameters

• core_cooling_day_set (thermost.core.CoreDaySet) – Core cooling days
over which to calculate baseline cooling setpoint.

• method ({"tenth_percentile"}, default: "tenth_percentile") –
Method to use in calculation of the baseline.

– “tenth_percentile”: 10th percentile of source temperature. (Either cooling setpoint or
temperature in).

• source ({"cooling_setpoint", "temperature_in"}, default
"temperature_in") – The source of temperatures to use in baseline calculation.

Returns baseline – The baseline cooling setpoint for the core cooling days as determined by the
given method.

Return type float

get_core_cooling_days(method=’entire_dataset’, min_minutes_cooling=30,
max_minutes_heating=0)

Determine core cooling days from data associated with this thermostat.

Parameters

• method ({"entire_dataset", "year_end_to_end"}, default:
"entire_dataset") – Method by which to find core cooling days.

– “entire_dataset”: all cooling days in dataset (days with >= 30 min of cooling runtime
and no heating runtime.

– “year_end_to_end”: groups all cooling days (days with >= 30 min of total cooling and
no heating) from January 1 to December 31 into individual core cooling sets.

• min_minutes_cooling (int, default 30) – Number of minutes of core cool-
ing runtime per day required for inclusion in core cooling day set.

1.2. API 19

thermostat Documentation, Release 1.0.0

• max_minutes_heating (int, default 0) – Number of minutes of heating run-
time per day beyond which the day is considered part of a shoulder season (and is therefore
not part of the core cooling day set).

Returns

core_cooling_day_sets – List of core day sets detected; Core day sets are represented as
pandas Series of boolean values, intended to be used as selectors or masks on the thermostat
data at hourly and daily frequencies.

A value of True at a particular index indicates inclusion of of the data at that index in the core
day set. If method is “entire_dataset”, name of core day set is “cooling_ALL”; if method is
“year_end_to_end”, names of core day sets are of the form “cooling_YYYY”

Return type list of thermostat.core.CoreDaySet objects

get_core_day_set_n_days(core_day_set)
Returns number of days in the core day set.

get_core_heating_day_baseline_setpoint(core_heating_day_set,
method=’ninetieth_percentile’,
source=’temperature_in’)

Calculate the core heating day baseline setpoint (comfort temperature).

Parameters

• core_heating_day_set (thermostat.core.CoreDaySet) – Core heating
days over which to calculate baseline heating setpoint.

• method ({"ninetieth_percentile"}, default:
"ninetieth_percentile") – Method to use in calculation of the baseline.

– “ninetieth_percentile”: 90th percentile of source temperature. (Either heating setpoint
or indoor temperature).

• source ({"heating_setpoint", "temperature_in"}, default
"temperature_in") – The source of temperatures to use in baseline calculation.

Returns baseline – The baseline heating setpoint for the heating day as determined by the given
method.

Return type float

get_core_heating_days(method=’entire_dataset’, min_minutes_heating=30,
max_minutes_cooling=0)

Determine core heating days from data associated with this thermostat

Parameters

• method ({"entire_dataset", "year_mid_to_mid"}, default:
"entire_dataset") – Method by which to find core heating day sets.

– “entire_dataset”: all heating days in dataset (days with >= 30 min of heating runtime
and no cooling runtime. (default)

– “year_mid_to_mid”: groups all heating days (days with >= 30 min of total heating and
no cooling) from July 1 to June 30 (inclusive) into individual core heating day sets. May
overlap with core cooling day sets.

• min_minutes_heating (int, default 30) – Number of minutes of heating run-
time per day required for inclusion in core heating day set.

20 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

• max_minutes_cooling (int, default 0) – Number of minutes of cooling run-
time per day beyond which the day is considered part of a shoulder season (and is therefore
not part of the core heating day set).

Returns

core_heating_day_sets – List of core day sets detected; Core day sets are represented as
pandas Series of boolean values, intended to be used as selectors or masks on the thermostat
data at hourly and daily frequencies.

A value of True at a particular index indicates inclusion of of the data at that index in the core
day set. If method is “entire_dataset”, name of core day sets are “heating_ALL”; if method
is “year_mid_to_mid”, names of core day sets are of the form “heating_YYYY-YYYY”

Return type list of thermostat.core.CoreDaySet objects

get_heating_demand(core_heating_day_set)
Calculates a measure of heating demand using the hourlyavgCTD method.

daily HTD𝑑 =
∑︀24

𝑖=1[hourlyΔ𝑇𝑑.𝑛−𝜏ℎ]+
24 , where

hourly∆𝑇𝑑.𝑛(∘𝐹) = hourly indoor𝑇𝑑.𝑛 − hourly outdoor𝑇𝑑.𝑛, and

𝑑 is the core heating day; (001, 002, 003...𝑥),

𝑛 is the hour; (01, 02, 03...24),

𝜏ℎ (heating) is the ∆𝑇 associated with 𝐻𝑇𝐷 = 0, reflecting that homes with no heat running tend to be
warmer that the outdoors, and

[]+ indicates that the term is zero if its value would be negative.

For the set of all core heating days in the CT interval data file, use ratio estimation to calculate 𝛼ℎ, the
home’s responsiveness to heating, which should be positive.

𝛼ℎ

(︀minutes
∘𝐹

)︀
= 𝑅𝑇actual heat∑︀𝑥

𝑑=1 daily HTD𝑑
, where

𝑅𝑇actual heat is the sum of heating run times for all core heating days in the CT interval data file.

For the set of all core heating days in the CT interval data file, optimize 𝜏ℎ that results in minimization
of the sum of squares of the difference between daily run times reported by the CT, and calculated daily
heating run times.

Next recalculate 𝛼ℎ (in accordance with the above step) and record the model’s parameters (𝛼ℎ, 𝜏ℎ)

Parameters core_heating_day_set (array_like) – Core day set over which to calcu-
late heating demand.

Returns

• demand (pd.Series) – Daily demand in the core heating day set as calculated using the
method described above.

• tau (float) – Estimate of 𝜏ℎ.

• alpha (float) – Estimate of 𝛼ℎ

• mse (float) – Mean squared error in runtime estimates.

• rmse (float) – Root mean squared error in runtime estimates.

• cvrmse (float) – Coefficient of variation of root mean squared error in runtime estimates.

• mape (float) – Mean absolute percent error

• mae (float) – Mean absolute error

1.2. API 21

thermostat Documentation, Release 1.0.0

get_ignored_days(core_day_set)
Determine how many days are ignored for a particular core day set

Returns

• n_both (int) – Number of days excluded from core day set because of presence of both
heating and cooling runtime.

• n_days_insufficient (int) – Number of days excluded from core day set because of null
runtime data.

get_inputfile_date_range(core_day_set)
Returns number of days of data provided in input data file.

get_resistance_heat_utilization_bins(core_heating_day_set)
Calculates resistance heat utilization metrics in temperature bins of 5 degrees between 0 and 60 degrees
Fahrenheit.

Parameters core_heating_day_set (thermostat.core.CoreDaySet) – Core
heating day set for which to calculate total runtime.

Returns RHUs – Resistance heat utilization for each temperature bin, ordered ascending by
temperature bin. Returns None if the thermostat does not control the appropriate equipment

Return type numpy.array or None

total_auxiliary_heating_runtime(core_day_set)
Calculates total auxiliary heating runtime.

Parameters core_day_set (thermostat.core.CoreDaySet) – Core day set for
which to calculate total runtime.

Returns total_runtime – Total auxiliary heating runtime.

Return type float

total_cooling_runtime(core_day_set)
Calculates total cooling runtime.

Parameters core_day_set (thermostat.core.CoreDaySet) – Core day set for
which to calculate total runtime.

Returns total_runtime – Total cooling runtime.

Return type float

total_emergency_heating_runtime(core_day_set)
Calculates total emergency heating runtime.

Parameters core_day_set (thermostat.core.CoreDaySet) – Core day set for
which to calculate total runtime.

Returns total_runtime – Total heating runtime.

Return type float

total_heating_runtime(core_day_set)
Calculates total heating runtime.

Parameters core_day_set (thermostat.core.CoreDaySet) – Core day set for
which to calculate total runtime.

Returns total_runtime – Total heating runtime.

Return type float

22 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

1.2.4 thermostat.regression

thermostat.regression.runtime_regression(daily_runtime, daily_demand, method)
Least squares regession of runtime against a measure of demand.

Parameters

• hourly_runtime (pd.Series with pd.DatetimeIndex) – Runtimes for a par-
ticular heating or cooling season.

• daily_demand (pd.Series with pd.DatetimeIndex) – A daily demand mea-
sure for each day in the heating or cooling season.

Returns

• slope (float) – The slope parameter found by the regression to minimize sq error

• intercept (float) – The intercept parameter found by the regression to minimize sq error

• mean_sq_err (float) – The mean squared error of the regession.

• root_mean_sq_err (float) – The root mean squared error of the regession.

1.2.5 thermostat.stats

thermostat.stats.combine_output_dataframes(dfs)
Combines output dataframes. Useful when combining output from batches.

Parameters dfs (list of pd.DataFrame) – Output dataFrames to combine into one.

Returns out – Dataframe with combined output metadata.

Return type pd.DataFrame

thermostat.stats.compute_summary_statistics(metrics_df, tar-
get_baseline_method=’baseline_percentile’,
advanced_filtering=False)

Computes summary statistics for the output dataframe. Computes the following statistics for each real-valued
or integer valued column in the output dataframe: mean, standard error of the mean, and deciles.

Parameters

• df (pd.DataFrame) – Output for which to compute summary statistics.

• label (str) – Name for this set of thermostat outputs.

• target_baseline_method ({"baseline_percentile",
"baseline_regional"}, default "baseline_percentile") – Baselining
method by which samples will be filtered according to bad fits.

Returns

stats – An ordered dict containing the summary statistics. Column names are as follows, in
which ### is a placeholder for the name of the column:

• mean: ###_mean

• standard error of the mean: ###_sem

• 10th quantile: ###_10q

• 20th quantile: ###_20q

• 30th quantile: ###_30q

1.2. API 23

thermostat Documentation, Release 1.0.0

• 40th quantile: ###_40q

• 50th quantile: ###_50q

• 60th quantile: ###_60q

• 70th quantile: ###_70q

• 80th quantile: ###_80q

• 90th quantile: ###_90q

• number of non-null core day sets: ###_n

The following general values are also output:

• label: label

• number of total core day sets: n_total_core_day_sets

Return type collections.OrderedDict

thermostat.stats.get_filtered_stats(df, row_filter, label, heating_or_cooling, target_columns,
target_baseline_method)

thermostat.stats.summary_statistics_to_csv(stats, filepath, product_id)
Write metric statistics to CSV file.

Parameters

• stats (list of dict) – List of outputs from thermo-
stat.stats.compute_summary_statistics()

• filepath (str) – Filepath at which to save the suppary statistics

• product_id (str) – A combination of the connected thermostat service plus one or more
connected thermostat device models that comprises the data set.

Returns df – A pandas dataframe containing the output data.

Return type pandas.DataFrame

1.2.6 thermostat.parallel

thermostat.parallel.schedule_batches(metadata_filename, n_batches, zip_files=False,
batches_dir=None)

Batch scheduler for large sets of thermostats. Can either create zipped directories ready be sent to separate
processors for parallel processing, or unpackaged metadata dataframes for more flexible processing.

Parameters

• metadata_filename (str) – Full path to location of file containing CSV formatted
metadata for

• n_batches (int) – Number of batches desired. Should be <= the number of available
thermostats.

• zip_files (boolean) – If True, create zipped directories of metadata and interval data.
Each batch will be named batch_XXXXX.zip, and will contain a directory named data,
which contains metadata and interval data for the batch. Must supply batches_dir argument
to use this option.

• batches_dir (str) – Path to directory in which to save created batches. Ignored for
zip_files=False.

24 Chapter 1. Usage

thermostat Documentation, Release 1.0.0

Returns batches – If zip_files is True, then returns list of names of created zip files. Otherwise,
returns list of metadata dataframes containing batches.

Return type list of str or list of pd.DataFrame

1.2. API 25

thermostat Documentation, Release 1.0.0

26 Chapter 1. Usage

CHAPTER 2

License

MIT

27

thermostat Documentation, Release 1.0.0

28 Chapter 2. License

CHAPTER 3

Contact

Please feel free to reach out to either Dan Baldewicz (Dan.Baldewicz@icfi.com, 518-452-6426) or Phil Ngo
(phil@theimpactlab.co) with questions or for technical support.

29

mailto:Dan.Baldewicz@icfi.com
mailto:phil@theimpactlab.co

thermostat Documentation, Release 1.0.0

30 Chapter 3. Contact

Python Module Index

t
thermostat.core, 14
thermostat.exporters, 14
thermostat.importers, 14
thermostat.parallel, 24
thermostat.regression, 23
thermostat.stats, 23

31

thermostat Documentation, Release 1.0.0

32 Python Module Index

Index

Symbols
__getnewargs__() (thermostat.core.CoreDaySet method),

14
__getstate__() (thermostat.core.CoreDaySet method), 15
__repr__() (thermostat.core.CoreDaySet method), 15

C
calculate_epa_field_savings_metrics() (thermo-

stat.core.Thermostat method), 16
combine_output_dataframes() (in module thermo-

stat.stats), 23
compute_summary_statistics() (in module thermo-

stat.stats), 23
CoreDaySet (class in thermostat.core), 14

D
daily (thermostat.core.CoreDaySet attribute), 15

E
end_date (thermostat.core.CoreDaySet attribute), 15

F
from_csv() (in module thermostat.importers), 14

G
get_baseline_cooling_demand() (thermo-

stat.core.Thermostat method), 17
get_baseline_cooling_runtime() (thermo-

stat.core.Thermostat method), 17
get_baseline_heating_demand() (thermo-

stat.core.Thermostat method), 17
get_baseline_heating_runtime() (thermo-

stat.core.Thermostat method), 18
get_cooling_demand() (thermostat.core.Thermostat

method), 18
get_core_cooling_day_baseline_setpoint() (thermo-

stat.core.Thermostat method), 19
get_core_cooling_days() (thermostat.core.Thermostat

method), 19

get_core_day_set_n_days() (thermostat.core.Thermostat
method), 20

get_core_heating_day_baseline_setpoint() (thermo-
stat.core.Thermostat method), 20

get_core_heating_days() (thermostat.core.Thermostat
method), 20

get_filtered_stats() (in module thermostat.stats), 24
get_heating_demand() (thermostat.core.Thermostat

method), 21
get_ignored_days() (thermostat.core.Thermostat

method), 21
get_inputfile_date_range() (thermostat.core.Thermostat

method), 22
get_resistance_heat_utilization_bins() (thermo-

stat.core.Thermostat method), 22
get_single_thermostat() (in module thermo-

stat.importers), 14

H
hourly (thermostat.core.CoreDaySet attribute), 15

M
metrics_to_csv() (in module thermostat.exporters), 14

N
name (thermostat.core.CoreDaySet attribute), 15

R
runtime_regression() (in module thermostat.regression),

23

S
schedule_batches() (in module thermostat.parallel), 24
start_date (thermostat.core.CoreDaySet attribute), 15
summary_statistics_to_csv() (in module thermostat.stats),

24

T
Thermostat (class in thermostat.core), 15
thermostat.core (module), 14

33

thermostat Documentation, Release 1.0.0

thermostat.exporters (module), 14
thermostat.importers (module), 14
thermostat.parallel (module), 24
thermostat.regression (module), 23
thermostat.stats (module), 23
total_auxiliary_heating_runtime() (thermo-

stat.core.Thermostat method), 22
total_cooling_runtime() (thermostat.core.Thermostat

method), 22
total_emergency_heating_runtime() (thermo-

stat.core.Thermostat method), 22
total_heating_runtime() (thermostat.core.Thermostat

method), 22

34 Index

	Usage
	Quickstart
	API

	License
	Contact
	Python Module Index

